Sunday 9 July 2017

Moving Average Estimation Matlab


Kode sumber lanjut Com. Klik disini untuk mendownload. Optical character recognition (OCR) adalah terjemahan dari potongan bit yang dipindai secara optik dari karakter teks tercetak atau tertulis ke dalam kode karakter, seperti ASCII. Ini adalah cara yang efisien untuk mengubah hard copy menjadi file data yang dapat diedit dan dimanipulasi pada komputer. Ini adalah teknologi yang sudah lama digunakan oleh perpustakaan dan instansi pemerintah untuk membuat dokumen yang panjang dengan cepat tersedia secara elektronik. Kemajuan teknologi OCR telah mendorong peningkatan penggunaannya oleh perusahaan. Untuk banyak tugas input dokumen, OCR adalah metode yang paling hemat biaya dan cepat. Dan setiap tahun, teknologinya membebaskan hektar ruang penyimpanan yang pernah diberikan ke lemari arsip dan kotak-kotak penuh dokumen kertas. Sebelum OCR dapat digunakan, bahan sumber harus dipindai menggunakan pemindai optik (dan terkadang papan sirkuit khusus di PC) untuk dibaca di halaman sebagai bitmap (pola titik). Software untuk mengenali gambar juga dibutuhkan. Perangkat lunak OCR kemudian memproses pemindaian ini untuk membedakan antara gambar dan teks dan menentukan huruf apa yang terwakili di area terang dan gelap. Sistem OCR yang lebih tua cocok dengan gambar ini terhadap bitmap yang tersimpan berdasarkan font tertentu. Hasil hit-or-miss dari sistem pengenalan pola semacam itu membantu membangun reputasi OCR untuk ketidakakuratan. Mesin OCR hari ini menambahkan beberapa algoritma teknologi jaringan syaraf tiruan untuk menganalisis sisi stroke, garis diskontinuitas antara karakter teks, dan latar belakang. Membiarkan penyimpangan tinta tercetak di atas kertas, masing-masing algoritma rata-rata menyinari cahaya dan gelap di sepanjang sisi goresan, cocok dengan karakter yang diketahui dan membuat tebakan terbaik seperti karakternya. Perangkat lunak OCR kemudian rata-rata atau jajak pendapat hasil dari semua algoritma untuk mendapatkan pembacaan tunggal. Paket perangkat lunak kami mengusulkan untuk menyelesaikan klasifikasi karakter tulisan tangan terisolasi dan digit dari Kumpulan Data Pen UJI Pena menggunakan Neural Networks. Data terdiri dari sampel 26 karakter dan 10 digit yang ditulis oleh 11 penulis di tablet PC. Karakter (dalam format UNIPEN standar) ditulis dalam huruf besar dan kecil dan ada dua karakter keseluruhan per penulis. Jadi outputnya harus ada di salah satu dari 35 kelas. Tujuan utamanya adalah membangun model independen penulis untuk setiap karakter. Pemilihan fitur berharga sangat penting dalam pengenalan karakter, oleh karena itu serangkaian fitur baru dan bermakna, Uniform Differential Normalized Coordinates (UDNC), diperkenalkan oleh C. Agell, diadopsi. Fitur-fitur ini ditunjukkan untuk meningkatkan tingkat pengenalan menggunakan algoritma klasifikasi sederhana sehingga mereka terbiasa melatih Jaringan Syaraf Tiruan dan menguji kinerjanya pada Kumpulan Data Karakter UJI Pen. Ketentuan Indeks: Matlab, sumber, kode, ocr, pengenalan karakter optik, teks pindaian, teks tertulis, ascii, karakter terisolasi. Gambar 1. Teks tertulis Kode sumber yang sederhana dan efektif untuk Optical Character Recognition. Kode demo (protected P-files) tersedia untuk evaluasi kinerja. Matlab Image Processing Toolbox dan Matlab Neural Network Toolbox diperlukan. Pengenalan tulisan tangan untuk karakter terisolasi Format file UNIPEN yang didukung Koordinat normalisasi seragam yang seragam Integrasi yang cepat dan optimal Kode Demo GUI yang Mudah dan intuitif (file P yang dilindungi) tersedia untuk evaluasi kinerja Kami merekomendasikan untuk memeriksa koneksi aman ke PayPal, untuk menghindari kecurangan. Sumbangan ini harus dianggap sebagai dorongan untuk memperbaiki kode itu sendiri. Optical Character Recognition System - Klik disini untuk sumbangan anda. Untuk mendapatkan kode sumber Anda harus membayar sejumlah kecil uang: 200 EUROS (kurang dari 280 Dolar A. S.). Setelah Anda melakukan ini, silakan kirim email ke luigi. rosatiscali. it sesegera mungkin (dalam beberapa hari) Anda akan menerima peluncuran Sistem Karakter Karakter Optik kami yang baru. Sebagai alternatif, Anda dapat memberikan menggunakan koordinat perbankan kami: Kode Sumber Lanjutan. Com 31.10.2015 Kode sumber matlab untuk pengenalan biometrik telah diperbarui. Mengurangi biaya. Semua perangkat lunak dilengkapi dengan diskon besar, banyak kode ditawarkan secara gratis. Pertunjukan yang lebih baik. Beberapa bug kecil telah diperbaiki. Kemampuan perangkat lunak yang disempurnakan. Banyak kode telah diperbaiki dalam hal kecepatan dan manajemen memori. Ikuti kami di Twitter Ikuti kami di FaceBook Ikuti kami di YouTube Ikuti kami di LinkedIn Bantuan real-time. Hubungkan kami sekarang dengan tutorial video WhatsApp 393207214179. Perangkat lunak itu intuitif, mudah dipahami dan didokumentasikan dengan baik. Untuk sebagian besar kode, banyak tutorial video telah dipublikasikan di saluran YouTube kami. Kami juga mengembangkan software on-demand. Untuk pertanyaan silahkan email kami. Bergabunglah dengan kami21.06.2005 Sistem biometrik dapat dipandang sebagai sistem pengenalan pola yang terdiri dari tiga modul utama: modul sensor, modul ekstraksi fitur dan modul pencocokan fitur. Perancangan sistem semacam itu dipelajari dalam konteks banyak modalitas biometrik yang umum digunakan - sidik jari, wajah, ucapan, tangan, iris. Berbagai algoritma yang telah dikembangkan untuk masing-masing modalitas ini akan dipaparkan. 16.05.2006 Jaringan syaraf tiruan adalah kelompok neuron biologis yang saling terkait. Dalam penggunaan modern istilah ini juga bisa merujuk pada jaringan syaraf tiruan, yang merupakan neuron buatan. Dengan demikian, istilah Neural Network menentukan dua konsep yang berbeda: - Jaringan saraf biologis adalah pleksus neuron terhubung atau berfungsi secara fungsional di sistem saraf perifer atau sistem saraf pusat. - Di bidang neuroscience, paling sering mengacu pada sekelompok neuron dari sistem saraf yang sesuai untuk analisis laboratorium. Jaringan syaraf tiruan dirancang untuk memodelkan beberapa sifat jaringan saraf biologis, meskipun sebagian besar aplikasi bersifat teknis berlawanan dengan model kognitif. Jaringan saraf dibuat dari unit yang sering diasumsikan sederhana dalam arti bahwa negara mereka dapat digambarkan dengan nomor tunggal, nilai aktivasi mereka. Setiap unit menghasilkan sinyal output berdasarkan aktivasi. Unit terhubung satu sama lain secara khusus, masing-masing sambungan memiliki bobot individu (sekali lagi dijelaskan oleh satu nomor). Setiap unit mengirimkan nilai outputnya ke semua unit lain yang memiliki koneksi keluar. Melalui koneksi ini, output satu unit dapat mempengaruhi aktivasi unit lain. Unit yang menerima koneksi menghitung aktivasi dengan mengambil jumlah tertimbang dari sinyal input (yaitu mengalikan setiap sinyal masukan dengan bobot yang sesuai dengan koneksi tersebut dan menambahkan produk ini). Output ditentukan oleh fungsi aktivasi berdasarkan aktivasi ini (misalnya unit menghasilkan keluaran atau kebakaran jika aktivasi berada di atas nilai ambang batas). Jaringan belajar dengan mengubah bobot koneksi. Secara umum, jaringan syaraf tiruan terdiri dari kelompok atau kelompok neuron yang terhubung secara fisik atau berfungsi secara fungsional. Sebuah neuron tunggal dapat dihubungkan ke banyak neuron lain dan jumlah neuron dan koneksi dalam jaringan bisa sangat besar. Sambungan, yang disebut sinapsis biasanya terbentuk dari akson hingga dendrit, meskipun mikroskop dendrodentritik dan koneksi lainnya dimungkinkan. Terlepas dari sinyal listrik, ada bentuk sinyal lain yang muncul dari difusi neurotransmitter, yang memiliki efek pada sinyal listrik. Dengan demikian, seperti jaringan biologis lainnya, jaringan syaraf tiruan sangat kompleks. Sementara deskripsi rinci tentang sistem syaraf tampaknya tidak dapat dicapai, kemajuan dibuat untuk pemahaman mekanisme dasar yang lebih baik. Kecerdasan buatan dan pemodelan kognitif mencoba mensimulasikan beberapa sifat jaringan saraf. Sementara teknik yang sama, yang pertama memiliki tujuan untuk menyelesaikan tugas tertentu, sementara yang kedua bertujuan untuk membangun model matematis sistem saraf biologis. Di bidang kecerdasan buatan, jaringan syaraf tiruan telah berhasil diterapkan untuk pengenalan suara, analisis citra dan kontrol adaptif, untuk membangun agen perangkat lunak (di komputer dan video game) atau robot otonom. Sebagian besar jaringan syaraf tiruan yang digunakan saat ini untuk kecerdasan buatan didasarkan pada estimasi statistik, teori pengoptimalan dan pengendalian. Bidang pemodelan kognitif adalah pemodelan fisik atau matematis dari perilaku sistem saraf mulai dari tingkat saraf individu (misalnya memodelkan kurva respon spike neuron ke stimulus), melalui tingkat cluster saraf (misalnya memodelkan pelepasan dan efek dopamin Di ganglia basal) ke organisme lengkap (misalnya pemodelan perilaku respons organisme terhadap rangsangan). 11.06.2007 Algoritma genetika merupakan kelas teknik pencarian, adaptasi, dan pengoptimalan berdasarkan prinsip evolusi alami. Algoritma genetika dikembangkan oleh Belanda. Algoritma evolusioner lainnya mencakup strategi evolusi, pemrograman evolusioner, sistem klasifikasi, dan pemrograman genetika. Algoritma evolusioner mempertahankan populasi kandidat solusi dan mengevaluasi kualitas setiap kandidat solusi sesuai dengan fungsi kebugaran spesifik masalah, yang mendefinisikan lingkungan untuk evolusi. Calon solusi baru dibuat dengan memilih anggota populasi yang relatif sesuai dan menggabungkannya kembali melalui berbagai operator. Algoritma evolusioner spesifik dier dalam representasi solusi, mekanisme seleksi, dan rincian operator rekombinasi. Dalam algoritma genetika, kandidat solusi diwakili sebagai string karakter dari abjad (sering biner) yang diberikan. Dalam masalah tertentu, pemetaan antara struktur genetik dan ruang solusi asli harus dikembangkan, dan fungsi kebugaran harus didefinisikan. Fungsi kebugaran mengukur kualitas larutan yang sesuai dengan struktur genetik. Dalam masalah optimasi, fungsi fitness hanya menghitung nilai fungsi objektif. Dalam masalah lain, kebugaran dapat ditentukan oleh lingkungan koevolusi yang terdiri dari struktur genetik lainnya. Misalnya, seseorang dapat mempelajari sifat kesetimbangan dari masalah teori permainan dimana populasi strategi berevolusi dengan kebugaran setiap strategi yang didefinisikan sebagai hasil rata-rata terhadap anggota populasi lainnya. Algoritma genetik dimulai dengan populasi kandidat solusi yang dihasilkan secara acak. Generasi berikutnya diciptakan dengan menggabungkan kandidat yang menjanjikan. Rekombinasi melibatkan dua orang tua yang dipilih secara acak dari populasi, dengan probabilitas seleksi bias mendukung kandidat yang relatif bugar. Orang tua direkombinasi melalui operator crossover, yang membagi dua struktur genetik di lokasi yang dipilih secara acak, dan bergabung dengan sepotong dari setiap orang tua untuk menciptakan keturunan (sebagai perlindungan terhadap hilangnya keragaman genetik, mutasi acak kadang-kadang diperkenalkan ke dalam keturunan). Algoritma mengevaluasi kebugaran keturunan dan menggantikan salah satu anggota populasi yang relatif tidak layak. Struktur genetik baru diproduksi sampai generasi selesai. Generasi berturut-turut diciptakan dengan cara yang sama sampai kriteria penghentian yang didefinisikan dengan baik terpenuhi. Populasi akhir menyediakan koleksi calon solusi, satu atau lebih yang dapat diterapkan pada masalah asli. Meskipun algoritma evolusioner tidak dijamin untuk menemukan optimal global, mereka dapat menemukan solusi yang dapat diterima secara relatif cepat dalam berbagai masalah. Algoritma evolusioner telah diterapkan pada sejumlah besar masalah di bidang teknik, ilmu komputer, ilmu kognitif, ekonomi, ilmu manajemen, dan bidang lainnya. Jumlah aplikasi praktis telah meningkat dengan mantap, terutama sejak akhir 1980an. Aplikasi bisnis yang khas melibatkan perencanaan produksi, penjadwalan job shop, dan masalah kombinatorial yang sulit lainnya. Algoritma genetika juga telah diterapkan pada pertanyaan teoritis di pasar ekonomi, peramalan deret waktu, dan estimasi ekonometrik. Algoritma genetika berbasis string telah diterapkan untuk menemukan strategi penentuan waktu pasar berdasarkan data fundamental untuk pasar saham dan obligasi. 23.04.2006 Daftar bahasa pemrograman berbasis matriks: Scilab - Scilab adalah paket perangkat lunak ilmiah untuk perhitungan numerik yang menyediakan lingkungan komputasi terbuka yang kuat untuk aplikasi teknik dan ilmiah. Dikembangkan sejak tahun 1990 oleh para periset dari INRIA dan ENPC, sekarang dipelihara dan dikembangkan oleh Scilab Consortium sejak diluncurkan pada bulan Mei 2003. Proyek R untuk Statistical Computing - R adalah lingkungan perangkat lunak bebas untuk komputasi dan grafik statistik. Ini mengkompilasi dan berjalan di berbagai platform UNIX, Windows dan MacOS. Octave - Octave adalah bahasa tingkat tinggi, terutama ditujukan untuk perhitungan numerik. Ini menyediakan antarmuka baris perintah yang mudah digunakan untuk memecahkan masalah linier dan nonlinear secara numerik, dan untuk melakukan eksperimen numerik lainnya menggunakan bahasa yang sebagian besar kompatibel dengan Matlab. Ini juga bisa digunakan sebagai bahasa yang berorientasi batch. Python - Python adalah bahasa pemrograman berorientasi objek dinamis yang bisa digunakan untuk berbagai jenis pengembangan perangkat lunak. Ini menawarkan dukungan kuat untuk integrasi dengan bahasa dan alat lainnya, dilengkapi dengan perpustakaan standar yang luas, dan dapat dipelajari dalam beberapa hari. Banyak pemrogram Python melaporkan keuntungan produktivitas yang substansial dan merasa bahasa tersebut mendorong pengembangan kode yang lebih berkualitas dan lebih mudah dipertahankan. GEOS 585A, Analisis Seri Terapan Waktu Telepon: (520) 621-3457 Faks: (520) 621-8229 Jam kerja Jumat, 1 : 00-6: 00 (silahkan email ke pertemuan jadwal) Deskripsi Kursus Alat analisis dalam domain waktu dan frekuensi diperkenalkan dalam konteks seri waktu sampel. Saya menggunakan dataset dari seri waktu sampel untuk menggambarkan metode, dan mengubah dataset setiap semester kursus ditawarkan. Tahun ini dataset sampel berasal dari proyek NSF mengenai variabilitas snowpack di American River Basin of California. Dataset ini mencakup kronologi ring pohon, indeks iklim, catatan arus sungai, dan rangkaian waktu setara salju yang diukur di stasiun kursus salju. Anda akan mengumpulkan deret waktu Anda sendiri untuk digunakan dalam kursus. Ini mungkin berasal dari proyek penelitian Anda sendiri. Kembali ke Atas Halaman Ini adalah kursus pengantar, dengan penekanan pada aspek praktis dari analisis deret waktu. Metode diperkenalkan secara hierarkis - dimulai dengan grafis terminologi dan eksplorasi, beralih ke statistik deskriptif, dan diakhiri dengan prosedur pemodelan dasar. Topik meliputi detrending, filtering, autoregressive modeling, spektral analysis dan regression. Anda menghabiskan dua minggu pertama menginstal Matlab di laptop Anda, mendapatkan pengenalan dasar tentang Matlab, dan mengumpulkan dataset Anda untuk seri waktu kursus. Dua belas topik, atau pelajaran kemudian ditutup, masing-masing diberikan seminggu, atau dua periode kelas. Dua belas tugas kelas mengikuti topik. Penugasan terdiri dari penerapan metode dengan menjalankan skrip Matlab pra-tulis (program) pada deret waktu Anda dan menafsirkan hasilnya. Kursus 3 kredit untuk siswa di kampus di University of Arizona di Tucson, dan 1 kredit untuk siswa online. Setiap deret waktu dengan kenaikan waktu konstan (mis., Bulan, bulan, tahun) adalah kandidat untuk digunakan dalam kursus. Contohnya adalah pengukuran curah hujan setiap hari, aliran arus total musiman, suhu udara rata-rata musim panas, indeks pertumbuhan pohon tahunan, indeks suhu permukaan laut, dan kenaikan harian semak semak. Sebagai hasil dari mengikuti kursus, Anda harus: memahami konsep dan terminologi time series dasar dapat memilih metode time series yang sesuai dengan tujuan dapat mengevaluasi secara kritis literatur ilmiah yang menggunakan metode time series yang dibahas telah meningkatkan pemahaman tentang sifat deret waktu dari Dataset sendiri dapat ringkas merangkum hasil analisis deret waktu secara tertulis Prasyarat Kursus statistik pendahuluan Akses ke komputer laptop yang mampu menginstal Matlab di dalamnya Izin para instruktur (mahasiswa sarjana dan mahasiswa online) Persyaratan Lain Jika Anda berada di Universitas Mahasiswa Arizona (UA) di kampus di Tucson, Anda memiliki akses ke Matlab dan kotak peralatan yang dibutuhkan melalui lisensi situs UA karena tidak memerlukan perangkat lunak biaya. Tidak ada pengalaman sebelumnya dengan Matlab yang dibutuhkan, dan pemrograman komputer bukan bagian dari kursus. Jika Anda online, bukan di kampus UA, Anda akan bisa mengikuti kursus semester musim semi 2017 sebagai iCourse. Anda harus memastikan bahwa Anda memiliki akses ke Matlab dan kotak peralatan yang diperlukan (lihat di bawah) di lokasi Anda. Akses ke internet. Tidak ada pertukaran kertas dalam kursus. Catatan dan tugas ditukar secara elektronik dan selesai diserahkan secara elektronik melalui sistem University of Arizona Desire2Learn (D2L). Versi matlab Saya memperbarui skrip dan fungsi sekarang dan kemudian menggunakan rilis lisensi situs saat ini dari Matlab, dan pembaruannya mungkin menggunakan fitur Matlab yang tidak tersedia dalam rilis Matlab sebelumnya. Untuk 2017, saya menggunakan Matlab Version 9.1.0.441655 (R2016b). Jika Anda menggunakan rilis sebelumnya, pastikan itu Matlab Release 2007b atau lebih tinggi. Selain paket Matlab utama, empat toolboxes digunakan: Statistik, Pengolahan Sinyal, Identifikasi Sistem, dan Spline (Matlab Release 2010a atau sebelumnya), atau Curve Fitting (Matlab Release 2010b atau yang lebih baru) Ketersediaan Kursus ini ditawarkan di Semester Musim Semi Setiap tahun (2015, 2017, dst.). Ini terbuka untuk mahasiswa pascasarjana dan mungkin juga diambil oleh para manula senior dengan izin instruktur. Pendaftaran siswa UA tinggal ditutup pada usia 18 untuk Semester Musim Semi 2017. Sejumlah kecil siswa online juga biasanya diakomodasi dengan menawarkan kursus dengan berbagai cara. Caranya sekarang adalah tempat iCourse yang dijelaskan di atas. Kembali ke Atas Halaman Garis Besar Kursus (Pelajaran) Jadwal biasanya memungkinkan sekitar dua minggu untuk mengumpulkan data dan menjadi terbiasa dengan Matlab. Kemudian satu minggu (dua periode kelas) dikhususkan untuk masing-masing dari 12 pelajaran atau topik. Kelas bertemu pada hari Selasa dan Kamis. Topik baru diperkenalkan pada hari Selasa, dan dilanjutkan pada hari Kamis berikutnya. Kelas hari Kamis diakhiri dengan sebuah tugas dan demonstrasi menjalankan skrip pada data sampel saya. Tugasnya jatuh tempo (harus diunggah oleh Anda ke D2L) sebelum kelas pada hari Selasa berikutnya. 12 jam pertama kelas hari Selasa itu digunakan untuk penilaian diri yang dipandu dan penilaian tugas dan pengunggahan tugas dinilai (dinilai) ke D2L. Sisanya 45 menit digunakan untuk mengenalkan topik selanjutnya. Anda harus membawa laptop Anda ke kelas pada hari Selasa. 12 pelajaran atau topik yang dibahas dalam kursus tercantum dalam garis besar kelas. Siswa online diharapkan mengikuti jadwal penyerahan tugas yang sama dengan siswa yang tinggal, namun tidak memiliki akses ke ceramah. Tugas yang dikirim dari siswa online tidak dinilai sendiri, namun dinilai oleh saya. Siswa online harus memiliki akses ke D2L untuk mengirimkan tugas. Semester musim semi 2017 Kelas bertemu dua kali seminggu selama 75 menit, 9: 00-10: 15 AM TTh, di kamar 424 (Ruang Konferensi) Gedung Cincin Pohon Bryant Bannister (bangunan 45B). Hari pertama kelas adalah 12 Januari (Kam). Hari terakhir kelas adalah 2 Mei (sel). Tidak ada kelas selama minggu Spring Break (Mar 11-19). Anda menganalisis data pilihan Anda sendiri di kelas tugas. Sebagaimana tercantum dalam ikhtisar kursus. Ada banyak fleksibilitas dalam pemilihan deret waktu. Saya akan membuat katalog rangkaian waktu yang sesuai, tapi yang terbaik adalah memfokuskan kursus pada kumpulan data Anda sendiri. Tugas pertama melibatkan menjalankan skrip yang menyimpan data dan metadata yang telah Anda kumpulkan di file mat, format asli Matlab. Tugas selanjutnya menarik data dari file mat untuk analisis deret waktu. Penugasan 12 topik tersebut dibahas secara berurutan sepanjang semester, yang mencakup sekitar 15 minggu. Tentang dua minggu pertama (pertemuan kelas 4-5) digunakan untuk beberapa bahan pengantar, menentukan dan mengumpulkan deret waktu Anda, dan menyiapkan Matlab di laptop Anda. Setiap minggu setelah itu dikhususkan untuk salah satu dari 12 topik topik. Setiap tugas terdiri dari membaca bab catatan, menjalankan skrip Matlab terkait yang menerapkan metode analisis time series pilihan ke data Anda, dan menuliskan interpretasi Anda terhadap hasilnya. Tugas memerlukan pemahaman tentang topik kuliah serta kemampuan untuk menggunakan komputer dan perangkat lunak. Anda mengirimkan tugas dengan mengunggahnya ke D2L sebelum kelas Selasa saat topik berikutnya diperkenalkan. Semester pertama kelas Selasa itu digunakan untuk penilaian diri yang dipandu oleh penugasan, termasuk mengunggah PDF dengan self-grade ke D2L. Saya memeriksa satu atau beberapa tugas yang dinilai sendiri setiap minggu (dengan seleksi acak), dan mungkin mengubah nilainya. Untuk mengetahui cara mengakses tugas, klik file tugas. Bacaan terdiri dari catatan kelas. Ada dua belas set. pdf mencatat file. Satu untuk masing-masing topik kursus. File. pdf ini dapat diakses melalui Web. Informasi lebih lanjut tentang berbagai topik yang dibahas dalam kursus dapat ditemukan melalui referensi yang tercantum di akhir setiap bab catatan kelas. Kelas didasarkan sepenuhnya pada kinerja pada tugas, masing-masing bernilai 10 poin. Tidak ada ujian. Jumlah total poin yang mungkin untuk 12 topik adalah 12 x 10 120. Nilai A yang dibutuhkan 90-100 persen dari poin yang mungkin. Nilai B membutuhkan 80-90 persen. Nilai C membutuhkan 70-80 persen, dan sebagainya. Nilai diberikan dengan penilaian diri yang dipandu oleh rubrik yang disajikan di kelas. Jumlah poin yang diterima harus ditandai di bagian atas setiap tugas bergradasi. Markup penugasan Anda harus menyertakan anotasi dari setiap penurunan harga dengan mengacu pada rubrik yang diilustrasikan di kelas (misalnya -0,5, rp3 menunjukkan pengurangan sebesar -0,5 karena kesalahan yang terkait dengan rubrik poin 3) Tugas, diberikan di kelas pada hari Kamis, akan Karena (diunggah ke D2L oleh Anda) sebelum memulai kelas pada hari Selasa berikutnya. Setengah jam pertama periode pertemuan hari Selasa akan didedikasikan untuk presentasi rubrik penilaian, penilaian sendiri atas penugasan yang telah selesai, dan pengunggahan tugas yang dinilai sendiri ke D2L. Jadwal ini memberi Anda waktu 4 hari untuk menyelesaikan dan mengunggah tugas ke D2L sebelum pukul 09:00 hari Selasa. D2L melacak waktu penugasan diupload, dan tidak ada hukuman yang dinilai selama diunggah sebelum pukul 09:00 pada hari Selasa tanggal jatuh tempo. Jika Anda memiliki beberapa jadwal yang harus jauh dari kelas (misalnya, kehadiran di sebuah konferensi), Anda bertanggung jawab untuk mengunggah tugas sebelum pukul 09:00 hari Selasa karena waktunya, dan untuk mengupload versi self-graded pada pukul 10:15 pagi. hari yang sama. Dengan kata lain, jadwalnya sama dengan siswa yang berada di kelas. Jika keadaan darurat muncul (misalnya Anda terkena flu) dan tidak dapat melakukan tugas atau penilaian sesuai jadwal, kirimkan saya email dan kami akan sampai di akomodasi. Jika tidak, denda 5 poin (setengah dari total poin yang tersedia untuk latihan) akan dinilai. Pengenalan data pengorganisasian rangkaian waktu untuk analisis Suatu deret waktu didefinisikan secara luas sebagai serangkaian pengukuran yang dilakukan pada waktu yang berbeda. Beberapa kategori deskriptif dasar deret waktu adalah 1) panjang vs pendek, 2) bahkan langkah waktu vs langkah waktu yang tidak rata, 3) diskrit vs kontinyu, 4) periodik vs aperiodik, 5) stasioner vs nonstasioner, dan 6) univariat vs multivariat . Sifat-sifat ini dan juga tumpang tindih temporal dari beberapa seri, harus dipertimbangkan dalam memilih kumpulan data untuk analisis dalam kursus ini. Anda akan menganalisis rangkaian waktu Anda sendiri di kursus. Langkah pertama adalah memilih seri tersebut dan menyimpannya dalam struktur di file tikar. Keseragaman dalam penyimpanan pada awalnya sangat sesuai untuk kelas ini sehingga perhatian kemudian dapat difokuskan pada pemahaman metode deret waktu, bukan debug kode komputer untuk menyiapkan data untuk analisis. Struktur adalah variabel Matlab yang mirip dengan database sehingga isinya diakses oleh penanda lapangan tekstual. Struktur dapat menyimpan data dari berbagai bentuk. Sebagai contoh, satu bidang mungkin merupakan matriks deret waktu numerik, yang lain mungkin berupa teks yang menjelaskan sumber data, dsb. Dalam tugas pertama Anda akan menjalankan skrip Matlab yang membaca rangkaian waktu dan metadata Anda dari file teks ascii yang Anda siapkan sebelumnya dan Menyimpan data di struktur Matlab dalam file matrik tunggal. Dalam tugas selanjutnya Anda akan menerapkan metode time series ke data dengan menjalankan skrip dan fungsi Matlab yang memuat file mat dan mengoperasikan struktur tersebut. Pilih data sampel yang akan digunakan untuk tugas selama kursus Baca: (1) Notes1.pdf, (2) Persiapan, dapat diakses dari menu bantuan MATLAB Jawab: Jalankan skrip geosa1.m dan jawablah pertanyaan yang tercantum dalam file di a1.pdf Bagaimana membedakan kategori deret waktu Bagaimana cara memulai dan berhenti MATLAB Bagaimana cara memasukkan perintah MATLAB pada command prompt Bagaimana membuat angka di jendela gambar Bagaimana cara mengekspor tokoh ke pengolah kata Anda Perbedaan antara skrip dan fungsi MATLAB Bagaimana cara menjalankan skrip dan fungsi Bentuk variabel struktur MATLAB Bagaimana menerapkan skrip geosa1.m untuk mendapatkan serangkaian rangkaian waktu dan metadata ke dalam struktur MATLAB Distribusi probabilitas deret waktu menggambarkan probabilitas bahwa pengamatan masuk ke dalam kisaran nilai tertentu. Distribusi probabilitas empiris untuk rangkaian waktu dapat dicapai dengan memilah dan memberi peringkat nilai dari seri. Quantiles dan persentil adalah statistik yang berguna yang dapat diambil secara langsung dari distribusi probabilitas empiris. Banyak uji statistik parametrik mengasumsikan deret waktu adalah sampel dari populasi dengan distribusi probabilitas populasi tertentu. Seringkali penduduk dianggap normal. Bab ini menyajikan beberapa definisi dasar, statistik dan plot yang terkait dengan distribusi probabilitas. Sebagai tambahan, sebuah tes (uji Lilliefors) diperkenalkan untuk menguji apakah sampel berasal dari distribusi normal dengan mean dan varians yang tidak ditentukan. Jawaban: Jalankan skrip geosa2.m dan jawab pertanyaan yang tercantum dalam file di a2.pdf Definisi istilah: deret waktu, stasioneritas, kepadatan probabilitas, fungsi distribisi, quantile, spread, lokasi, mean, standar deviasi, dan condong Bagaimana menafsirkan Grafik paling berharga dalam analisis deret waktu - deret seri waktu Bagaimana menafsirkan kotak petak, histogram dan plot probabilitas normal Parameter dan bentuk dari distribusi normal Uji Lilliefors untuk normalitas: deskripsi grafis, asumsi, hipotesis nol dan alternatif Peringatan pada interpretasi Tingkat signifikansi uji statistik ketika deret waktu tidak acak dalam waktu Bagaimana menerapkan geosa2.m untuk memeriksa properti distribusi dari deret waktu dan menguji seri untuk normalitas Autokorelasi mengacu pada korelasi deret waktu dengan nilai masa lalu dan masa depannya sendiri. Autokorelasi juga kadang disebut korelasi tertinggal atau korelasi serial. Yang mengacu pada korelasi antara anggota dari serangkaian angka yang disusun pada waktunya. Autokorelasi positif bisa dianggap sebagai bentuk ketekunan yang spesifik. Kecenderungan sebuah sistem untuk tetap berada dalam keadaan yang sama dari satu pengamatan ke pengamatan berikutnya. Misalnya, kemungkinan besok hujan lebih besar jika hari ini hujan daripada jika hari ini kering. Seri waktu geofisika sering kali autokorelasi karena proses inersia atau carryover dalam sistem fisik. Misalnya, sistem tekanan rendah yang berkembang perlahan dan bergerak di atmosfer bisa memberi ketekunan pada curah hujan harian. Atau drainase yang lambat dari cadangan air tanah mungkin memberi korelasi dengan arus tahunan sungai yang berturut-turut. Atau fotosintat yang tersimpan mungkin memberi korelasi dengan nilai tahunan indeks cincin-pohon berturut-turut. Autokorelasi mempersulit penerapan uji statistik dengan mengurangi jumlah pengamatan independen. Autokorelasi juga dapat mempersulit identifikasi kovariansi signifikan atau korelasi antara deret waktu (misalnya presipitasi dengan deret pohon). Autokorelasi dapat dieksploitasi untuk prediksi: rangkaian waktu autokorelasi dapat diprediksi, probabilistik, karena nilai masa depan tergantung pada nilai arus dan masa lalu. Tiga alat untuk menilai autokorelasi deret waktu adalah (1) rangkaian deret waktu, (2) scatterplot yang tertinggal, dan (3) fungsi autokorelasi. Jawaban: Jalankan skrip geosa3.m dan jawab pertanyaan yang tercantum dalam file di a3.pdf Definisi: autokorelasi, ketekunan, korelasi serial, fungsi autokorelasi (acf), fungsi autocovariance (acvf), ukuran sampel efektif Bagaimana mengenali autokorelasi dalam deret waktu Plot Bagaimana menggunakan scatterplots yang tertinggal untuk menilai autokorelasi Bagaimana menafsirkan acf diplot Bagaimana menyesuaikan ukuran sampel untuk autokorelasi Definisi matematis dari fungsi autokorelasi Persyaratan yang mempengaruhi lebar pita kepercayaan dihitung dari acf Perbedaan antara satu sisi dan dua - dari uji autokorelasi lag-1 yang signifikan Bagaimana menerapkan geos3.m untuk mempelajari autokorelasi deret waktu Spektrum deret waktu adalah distribusi varians rangkaian sebagai fungsi frekuensi. Objek analisis spektral adalah untuk memperkirakan dan mempelajari spektrum. Spektrum tidak mengandung informasi baru selain fungsi autocovariance (acvf), dan kenyataannya spektrumnya dapat dihitung secara matematis dengan transformasi acvf. Tapi spektrum dan acvf menyajikan informasi tentang varians deret waktu dari sudut pandang komplementer. Acf merangkum informasi dalam domain waktu dan spektrum dalam domain frekuensi. Jawaban: Jalankan skrip geosa4.m dan jawab pertanyaan yang tercantum dalam file di a4.pdf Definisi: frekuensi, periode, panjang gelombang, spektrum, frekuensi Nyquist, frekuensi Fourier, bandwidth Alasan untuk menganalisis spektrum Bagaimana menafsirkan spektrum diplot dalam hal distribusi Varians Perbedaan antara spektrum dan spektrum normal Definisi jendela lag seperti yang digunakan dalam memperkirakan spektrum dengan metode Blackman-Tukey Bagaimana pilihan jendela lag mempengaruhi bandwidth dan varians spektrum perkiraan Bagaimana menentukan spektrum suara putih Dan spektrum autoregresif Bagaimana membuat sketsa beberapa bentuk spektral yang khas: white noise, autoregressive, quasi-periodic, frekuensi rendah, frekuensi tinggi Bagaimana cara menerapkan geosa4.m untuk menganalisis spektrum deret waktu dengan metode Blackman-Tukey Autoregressive-Moving Model rata-rata (ARMA) model Autoregressive-moving-average (ARMA) adalah model matematis dari ketekunan, atau autokorelasi, dalam deret waktu. ARMA models are widely used in hydrology, dendrochronology, econometrics, and other fields. There are several possible reasons for fitting ARMA models to data. Modeling can contribute to understanding the physical system by revealing something about the physical process that builds persistence into the series. For example, a simple physical water-balance model consisting of terms for precipitation input, evaporation, infiltration, and groundwater storage can be shown to yield a streamflow series that follows a particular form of ARMA model. ARMA models can also be used to predict behavior of a time series from past values alone. Such a prediction can be used as a baseline to evaluate possible importance of other variables to the system. ARMA models are widely used for prediction of economic and industrial time series. ARMA models can also be used to remove persistence. In dendrochronology, for example, ARMA modeling is applied routinely to generate residual chronologies time series of ring-width index with no dependence on past values. This operation, called prewhitening, is meant to remove biologically-related persistence from the series so that the residual may be more suitable for studying the influence of climate and other outside environmental factors on tree growth. Answer: Run script geosa5.m and answer questions listed in the file in a5.pdf The functional form of the simplest AR and ARMA models Why such models are referred to as autoregressive or moving average The three steps in ARMA modeling The diagnostic patterns of the autocorrelation and partial autocorrelation functions for an AR(1) time series Definition of the final prediction error (FPE) and how the FPE is used to select a best ARMA model Definition of the Portmanteau statistic, and how it and the acf of residuals can be used to assess whether an ARMA model effectively models the persistence in a series How the principle of parsimony is applied in ARMA modeling Definition of prewhitening How prewhitening affects (1) the appearance of a time series, and (2) the spectrum of a time series How to apply geosa5.m to ARMA-model a time series Spectral analysis -- smoothed periodogram method There are many available methods for estimating the spectrum of a time series. In lesson 4 we looked at the Blackman-Tukey method, which is based on Fourier transformation of the smoothed, truncated autocovariance function. The smoothed periodogram method circumvents the transformation of the acf by direct Fourier transformation of the time series and computation of the raw periodogram, a function first introduced in the 1800s for study of time series. The raw periodogram is smoothed by applying combinations or spans of one or more filters to produce the estimated spectrum. The smoothness, resolution and variance of the spectral estimates is controlled by the choice of filters. A more accentuated smoothing of the raw periodogram produces an underlying smoothly varying spectrum, or null continuum, against which spectral peaks can be tested for significance. This approach is an alternative to the specification of a functional form of the null continuum (e. g. AR spectrum). Answer: Run script geosa6.m and answer questions listed in the file in a6.pdf Definitions: raw periodogram, Daniell filter, span of filter, null continuum smoothness, stability and resolution of spectrum tapering, padding, leakage The four main steps in estimating the spectrum by the smoothed periodogram How the effect of choice of filter spans on the smoothness, stability and resolution of the spectrum How the null continuum is used in testing for significance of spectral peaks How to apply geosa6.m to estimate the spectrum of a time series by the smoothed periodogram method and test for periodicity at a specified frequency Trend in a time series is a slow, gradual change in some property of the series over the whole interval under investigation. Trend is sometimes loosely defined as a long term change in the mean (Figure 7.1), but can also refer to change in other statistical properties. For example, tree-ring series of measured ring width frequently have a trend in variance as well as mean (Figure 7.2). In traditional time series analysis, a time series was decomposed into trend, seasonal or periodic components, and irregular fluctuations, and the various parts were studied separately. Modern analysis techniques frequently treat the series without such routine decomposition, but separate consideration of trend is still often required. Detrending is the statistical or mathematical operation of removing trend from the series. Detrending is often applied to remove a feature thought to distort or obscure the relationships of interest. In climatology, for example, a temperature trend due to urban warming might obscure a relationship between cloudiness and air temperature. Detrending is also sometimes used as a preprocessing step to prepare time series for analysis by methods that assume stationarity. Many alternative methods are available for detrending. Simple linear trend in mean can be removed by subtracting a least-squares-fit straight line. More complicated trends might require different procedures. For example, the cubic smoothing spline is commonly used in dendrochronology to fit and remove ring-width trend that might not be linear, or not even monotonically increasing or decreasing over time. In studying and removing trend, it is important to understand the effect of detrending on the spectral properties of the time series. This effect can be summarized by the frequency response of the detrending function. Answer: Run script geosa7.m and answer questions listed in the file in a7.pdf Definitions: frequency response, spline, cubic smoothing spline Pros and cons of ratio vs difference detrending Interpretation of terms in the equation for the spline parameter How to choose a spline interactively from desired frequency response How the spectrum is affected by detrending How to measure the importance of the trend component in a time series How to apply geosa7.m to interactively choose a spline detrending function and detrend a time series The estimated spectrum of a time series gives the distribution of variance as a function of frequency. Depending on the purpose of analysis, some frequencies may be of greater interest than others, and it may be helpful to reduce the amplitude of variations at other frequencies by statistically filtering them out before viewing and analyzing the series. For example, the high-frequency (year-to-year) variations in a gauged discharge record of a watershed may be relatively unimportant to water supply in a basin with large reservoirs that can store several years of mean annual runoff. Where low-frequency variations are of main interest, it is desirable to smooth the discharge record to eliminate or reduce the short-period fluctuations before using the discharge record to study the importance of climatic variations to water supply. Smoothing is a form of filtering which produces a time series in which the importance of the spectral components at high frequencies is reduced. Electrical engineers call this type of filter a low-pass filter, because the low-frequency variations are allowed to pass through the filter. In a low-pass filter, the low frequency (long-period) waves are barely affected by the smoothing. It is also possible to filter a series such that the low-frequency variations are reduced and the high-frequency variations unaffected. This type of filter is called a high-pass filter. Detrending is a form of high-pass filtering: the fitted trend line tracks the lowest frequencies, and the residuals from the trend line have had those low frequencies removed. A third type of filtering, called band-pass filtering, reduces or filters out both high and low frequencies, and leaves some intermediate frequency band relatively unaffected. In this lesson, we cover several methods of smoothing, or low-pass filtering. We have already discussed how the cubic smoothing spline might be useful for this purpose. Four other types of filters are discussed here: 1) simple moving average, 2) binomial, 3) Gaussian, and 4) windowing (Hamming method). Considerations in choosing a type of low-pass filter are the desired frequency response and the span, or width, of the filter. Answer: Run script geosa8.m and answer questions listed in the file in a8.pdf Definitions: filter, filter weights, filter span, low-pass filter, high-pass filter, band-pass filter frequency response of a filter How the Gaussian filter is related to the Gaussian distribution How to build a simple binomial filter manually (without the computer) How to describe the frequency response function in terms of a system with sinusoidal input and output How to apply geosa8.m to interactively design a Gaussian, binomial or Hamming-window lowpass filter for a time series The Pearson product-moment correlation coefficient is probably the single most widely used statistic for summarizing the relationship between two variables. Statistical significance and caveats of interpretation of the correlation coefficient as applied to time series are topics of this lesson. Under certain assumptions, the statistical significance of a correlation coefficient depends on just the sample size, defined as the number of independent observations. If time series are autocorrelated, an effective sample size, lower than the actual sample size, should be used when evaluating significance. Transient or spurious relationships can yield significant correlation for some periods and not for others. The time variation of strength of linear correlation can be examined with plots of correlation computed for a sliding window. But if many correlation coefficients are evaluated simultaneously, confidence intervals should be adjusted ( Bonferroni adjustment ) to compensate for the increased likelihood of observing some high correlations where no relationship exists. Interpretation of sliding correlations can be also be complicated by time variations of mean and variance of the series, as the sliding correlation reflects covariation in terms of standardized departures from means in the time window of interest, which may differ from the long-term means. Finally, it should be emphasized that the Pearson correlation coefficient measures strength of linear relationship. Scatterplots are useful for checking whether the relationship is linear. Answer: Run script geosa9.m and answer questions listed in the file in a9.pdf Mathematical definition of the correlation coefficient Assumptions and hypothesis for significance testing of correlation coefficient How to compute significance level of correlation coefficient and to adjust the significance level for autocorrelation in the individual time series Caveats to interpretation of correlation coefficient Bonferroni adjustment to signficance level of correlation under multiple comparisons Inflation of variance of estimated correlation coefficient when time series autocorrelated Possible effects of data transformation on correlation How to interpret plots of sliding correlations How to apply geosa9.m to analyze correlations and sliding correlations between pairs of time series Lagged relationships are characteristic of many natural physical systems. Lagged correlation refers to the correlation between two time series shifted in time relative to one another. Lagged correlation is important in studying the relationship between time series for two reasons. First, one series may have a delayed response to the other series, or perhaps a delayed response to a common stimulus that affects both series. Second, the response of one series to the other series or an outside stimulus may be smeared in time, such that a stimulus restricted to one observation elicits a response at multiple observations. For example, because of storage in reservoirs, glaciers, etc. the volume discharge of a river in one year may depend on precipitation in the several preceding years. Or because of changes in crown density and photosynthate storage, the width of a tree-ring in one year may depend on climate of several preceding years. The simple correlation coefficient between the two series properly aligned in time is inadequate to characterize the relationship in such situations. Useful functions we will examine as alternative to the simple correlation coefficient are the cross-correlation function and the impulse response function. The cross-correlation function is the correlation between the series shifted against one another as a function of number of observations of the offset. If the individual series are autocorrelated, the estimated cross-correlation function may be distorted and misleading as a measure of the lagged relationship. We will look at two approaches to clarifying the pattern of cross-correlations. One is to individually remove the persistence from, or prewhiten, the series before cross-correlation estimation. In this approach, the two series are essentially regarded on equal footing . An alternative is the systems approach: view the series as a dynamic linear system -- one series the input and the other the output -- and estimate the impulse response function. The impulse response function is the response of the output at current and future times to a hypothetical pulse of input restricted to the current time. Answer: Run script geosa10.m and answer questions listed in the file in a10.pdf Definitions: cross-covariance function, cross-correlation function, impulse response function, lagged correlation, causal, linear How autocorrelation can distort the pattern of cross-correlations and how prewhitening is used to clarify the pattern The distinction between the equal footing and systems approaches to lagged bivariate relationships Which types of situations the impulse response function (irf) is an appropriate tool How to represent the causal system treated by the irf in a flow diagram How to apply geos10.m to analyze the lagged cross-correlation structure of a a pair of time series Multiple linear regression Multiple linear regression (MLR) is a method used to model the linear relationship between a dependent variable and one or more independent variables. The dependent variable is sometimes also called the predictand, and the independent variables the predictors. MLR is based on least squares: the model is fit such that the sum-of-squares of differences of observed and predicted values is minimized. MLR is probably the most widely used method in dendroclimatology for developing models to reconstruct climate variables from tree-ring series. Typically, a climatic variable is defined as the predictand and tree-ring variables from one or more sites are defined as predictors. The model is fit to a period -- the calibration period -- for which climatic and tree-ring data overlap. In the process of fitting, or estimating, the model, statistics are computed that summarize the accuracy of the regression model for the calibration period. The performance of the model on data not used to fit the model is usually checked in some way by a process called validation. Finally, tree-ring data from before the calibration period are substituted into the prediction equation to get a reconstruction of the predictand. The reconstruction is a prediction in the sense that the regression model is applied to generate estimates of the predictand variable outside the period used to fit the data. The uncertainty in the reconstruction is summarized by confidence intervals, which can be computed by various alternative ways. Answer: Run script geosa11.m (Part 1) and answer questions listed in the file in a11.pdf The equation for the MLR model Assumptions for the MLR model Definitions of MLR statistics: coefficient of determination, sums-of-squares terms, overall-F for the regression equation, standard error of the estimate, adjusted R-squared, pool of potential predictors The steps in an analysis of residuals How to apply geosa11.m (part 1) to fit a MLR regression model to predict one variable from a set of several predictor variables Validating the regression model Regression R-squared, even if adjusted for loss of degrees of freedom due to the number of predictors in the model, can give a misleading, overly optimistic view of accuracy of prediction when the model is applied outside the calibration period. Application outside the calibration period is the rule rather than the exception in dendroclimatology. The calibration-period statistics are typically biased because the model is tuned for maximum agreement in the calibration period. Sometimes too large a pool of potential predictors is used in automated procedures to select final predictors. Another possible problem is that the calibration period itself may be anomalous in terms of the relationships between the variables: modeled relationships may hold up for some periods of time but not for others. It is advisable therefore to validate the regression model by testing the model on data not used to fit the model. Several approaches to validation are available. Among these are cross-validation and split-sample validation. In cross-validation, a series of regression models is fit, each time deleting a different observation from the calibration set and using the model to predict the predictand for the deleted observation. The merged series of predictions for deleted observations is then checked for accuracy against the observed data. In split-sample calibration, the model is fit to some portion of the data (say, the second half), and accuracy is measured on the predictions for the other half of the data. The calibration and validation periods are then exchanged and the process repeated. In any regression problem it is also important to keep in mind that modeled relationships may not be valid for periods when the predictors are outside their ranges for the calibration period: the multivariate distribution of the predictors for some observations outside the calibration period may have no analog in the calibration period. The distinction of predictions as extrapolations versus interpolations is useful in flagging such occurrences. Answer: Run script geosa11.m (Part 2) and answer questions listed in the file in a12.pdf Definitions: validation, cross-validation, split-sample validation, mean square error (MSE), root-mean-square error (RMSE) standard error of prediction, PRESS statistic, hat matrix, extrapolation vs interpolation Advantages of cross-validation over alternative validation methods How to apply geosa11.m (part 2) for cross-validated MLR modeling of the relationship between a predictand and predictors, including generation of a reconstruction and confidence bands Downloading Files -- tsfiles. zip The Matlab class scripts and user-written functions are zipped in a file called tsfiles. zip. To get the files, first create an empty directory on your computer. This is where you will store all functions, scripts and data used in the course. Go to D2L, or click on tsfiles. zip to download the zip file to that directory and unzip it there. When you run matlab, be sure that directory is your current matlab working directory. Powerpoint lecture outlines miscellaneous files. Downloadable file other. zip has miscellaneous files used in lectures. Included are Matlab demo scripts, sample data files, user-written functions used by demo scripts, and powerpoint presentations, as pdfs (lect1a. pdf, lect1b. pdf, etc.) used in on-campus lectures. I update other. zip over the semester, and add the presentation for the current lecture within a couple of days after that lecture is given. To run the Matlab scripts for the assignments, you must have your data, the class scripts, and the user-written Matlab functions called by the scripts in a single directory on your computer. The name of this directory is unimportant. Under Windows, it might be something like C:geos585a. The functions and scripts provided for the course should not require any tailoring, but some changes can be made for convenience. For example, scripts and functions will typically prompt you for the name of your input data file and present Spring17 as the default. That is because Ive stored the sample data in Spring17.mat. If you want to avoid having to type over Spring17 with the name of your own data file each time you run the script, edit the matlab script with the Matlab editordebugger to change one line. In the editor, search for the string Spring17 and replace it with the name of your. mat storage file (e. g. Smith2017), then be sure to re-save the edited script.

No comments:

Post a Comment